RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2015

SECOND YEAR CHEMISTRY (Honours)

Time: 11 am - 1 pm Paper: IV Full Marks: 50

[Use a separate Answer Book for each group]

Group - A

Date : 21/05/2015

Unit - I [Answer <u>any one</u> question] 1. a) At 25°C, resistance of a cell filled with 0.01N KCl solution is 525 ohm. The resistance of the same cell filled with saturated solution of SrSO₄ is 4990 ohm. The specific conductance of water used is $1.5 \times 10^{-6} \text{Scm}^{-1}$ and that of 0.01 N KCl solution is $1.4087 \times 10^{-4} \text{Scm}^{-1}$ at 25°C . Determine the solubility of $SrSO_4$ in g/L unit at 25°C. (Atomic weight of Sr = 87.62) [3] b) A cell comprising a glass electrode and a saturated calomel electrode is used to measure pH of buffer solutions. Using a buffer of pH 4·0, emf of this cell is found to be 0·1120 volt. When a buffer of unknown pH is used, the potential of the cell is found to be 0.3865 volt. What is the pH of this buffer solution? [2] c) Standard potential of Ag⁺/Ag electrode is 0.7991 volt. For AgI, the value of solubility product is 8.7×10^{-17} . What will be the potential of the Ag⁺/Ag electrode in a saturated solution of AgI? Calculate the standard potential of the $\Gamma \mid AgI(s) \mid Ag$ electrode. Assume the temperature to be 25°C. [3] d) Using Debye-Hückel limiting law calculate the mean ionic activity coefficient of 0.001(M) aqueous solution of $K_3[Fe(CN)_6]$ at 25°C. [Debye-Hückel constant = 0.51 at 25°C] [2] e) The emf (E) of galvanic cell changes with temperature accordingly $E = a+bT+CT^2$, where a, b, c are the constants. If n be the number of electrons exchanged for the cell reaction, evaluate ΔS , ΔH and ΔC_p interms of a, b, c and T. [3] 2. a) The solubility of a sparingly soluble salt increases in presence of added electrolytes without a common ion —explain. [2] b) Depict a cell which may be used to determine the solubility product (K_{sp}) of AgBr. If $E^{\circ}_{Br^{-}/AgBr/Ag} = 0.071 \, V$ and $E^{\circ}_{Ag^{+}/Ag} = 0.799 \, V$ at 25°C, find out the value of K_{sp} at 25°C. [3] c) The emf of the cell $Zn(S) \mid ZnCl_2$ (m = 0.01021 mol/kg) $\mid AgCl(s) \mid Ag(s)$ was found to be 1.1566V. What is the mean ionic activity coefficient of ZnCl₂ in the solution? [3] $[\;E^{o}_{_{Cl^{-}/AgCl/Ag}}=+0\cdot222V,E^{o}_{_{Zn^{2+}/Zn}}=-0\cdot762\,V\;]$ d) Consider the following concentration cell with transport, Ag | AgCl(s) | KCl solution : KCl solution | AgCl(s) | Ag where a₁, a₂ are mean ionic activities of (a_1) two solutions. [3] e) What will be the expected values of equivalent and specific conductances of 0.1 N NH₄OH solution at 25°C? Given, $\Lambda_0 = 271.4 \,\mathrm{S\,cm}^2\,\mathrm{mol}^{-1}$ and $K_b = 1.81 \times 10^{-5}$ for NH₄OH. [2]

Unit - II

[Answer any one question]

3. a) Derive the expression for osmotic pressure of an ideal solution of a nonvolatile solute in terms of its molar concentration. [4]

- b) 1 mol of hydrogen gas at 0° C and 1 atm pressure is mixed adiabatically with another mol of the same gas at 100° C and 1 atm pressure to yield a mixture whose pressure is also 1 atm. Assuming hydrogen to behave ideally, calculate the value of ΔS for this mixing process.
- c) Freezing point of a solution may be increased in presence of a solute —justify or criticise. You may use a graphical plot to illustrate your answer.
- d) If α be the departure of volume from ideal behaviour and $\ln f = \ln P \frac{1}{RT} \int_0^P \alpha \, dP$, then show that at low pressure, f = zP, where f and z are fugacity and compressibility factor, respectively. [3]
- 4. a) Derive an expression for Gibbs potential of isothermal mixing for a number of ideal gases. [2]
 - b) Find out an expression for the chemical potential of the solvent of an ideal solution as a function of mol fraction of the solvent in solution.
 - c) Benzoic acid dimerises when dissolved in benzene. The osmotic pressure of a solution of 5g of benzoic acid in 100ml of benzene is 5.73 atm at 10°C. Find out the van't Hoff factor and degree of dissociation.
 - $d) \ \ \text{Show that} \quad \ i) \quad \ \left(\frac{\partial \mu_i}{\partial T}\right)_{P,n_i,n_j} = -\left(\frac{\partial S}{\partial n_i}\right)_{P,T,n_i(j\neq i)} = -\frac{\mu_i}{T}$
 - ii) $\mu_i = \left(\frac{\partial E}{\partial n_i}\right)_{S,V,n_i(j\neq i)}$ (the terms have their usual significance) [2+2]

Group - B

Unit - I

[Answer <u>any one</u> question]

5. a) Give mechanism of the following transformation

 $\begin{array}{c} \text{NO}_2 \\ \hline \text{EtOH} \end{array}$

- b) "The mechanism of Dakin reaction may be similar to that of the Baeyer-Villiger reaction."

 Justify (with possible mechanism).

 [3]
- c) Explain the following result mechanistically:

MeN Ph NaOH MeN OH

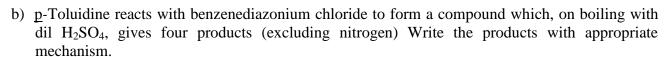
- d) Predict the product of the following reactions. Give mechanism.
 - i) $NH_2 + HNO_2 \rightarrow$

$$ii) \quad \stackrel{\text{H}_3C}{\longleftarrow} \quad \stackrel{\text{OH}}{\longrightarrow} \quad \stackrel{\text{p-toluenesulfonic acid}}{\stackrel{\text{acetone-water}}{\longrightarrow}} \quad \stackrel{\text{p-toluenesulfonic acid}}{\longrightarrow} \quad \stackrel{\text{p-toluenesu$$

- 6. a) Suggest chemical reactions to distinguish between the members of each of the following pairs: $[2\times2]$
 - i) NO_2 and NO_2
 - ii) NH_2 and NH_2 NH_2

[2] [3]

[3]


[3]

[3]

[4]

 $[2\times2\cdot5]$

(2)

[3]

c) Give the structure of the products when the following compound (A) is heated. Explain the result with plausible mechanism.

[4]

$$O - CH_2CH = CHCH_2CH_3$$
(A)

[2]

d) The nitration of phenylboronic acid, $PhB(OH)_2$, with mixed acid $-20^{\circ}C$ gives predominantly the m-derivative. With HNO_3-Ac_2O , the predominant product is the O-derivative. Suggest an explanation.

[2]

e) What is the product of the reaction of styrene with diazomethane? Explain.

[2]

Unit - II

[Answer any one question]

7. a) Give the synthetic equivalents corresponding to the following synthons: [1]

i)
$$\overset{+}{\text{C}}\text{H}_2\text{CH}_2\text{OH}$$
, ii) $\overset{-}{\text{C}}\text{H}_2\text{CO}_2\text{H}$

 $[2\times2]$

[Use MeMgBr]

HН

c) Explain why the synthesis of $Me_3 - C = C - CMe_3$ can not be accomplished by the Wittig reaction?

[2]

d) How could you prepare the following compound using *ortho*-lithiation procedures?

[3]

8. a) Give retrosynthetic analysis and efficient synthesis of the following:

 $[2\times2]$

i)
$$X_0$$

b) Show how the relationship between the alkene and the carboxylic acid influences your suggestions for a synthesis of these unsaturated acids.

[6]

____x__